Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

China Market Gasoline Review Using Fuel Particulate Emission Correlation Indices

2017-10-08
2017-01-2401
The impact of gasoline composition on vehicle particulate emissions response has been widely investigated and documented. Correlation equations between fuel composition and particulate emissions have also been documented, e.g. Particulate Matter Index (PMI) and Particulate Evaluation Index (PEI). Vehicle PM/PN emissions correlate very well with these indices. In a previous paper, global assessment with PEI on fuel sooting tendency was presented [1]. This paper will continue the previous theme by the authors, and cover China gasoline in more detail. With air pollution an increasing concern, along with more stringent emission requirements in China, both OEMs and oil industries are facing new challenges. Emissions controls require a systematic approach on both fuels and vehicles. Chinese production vehicle particulate emissions for a range of PEI fuels are also presented.
Technical Paper

Combined Drag and Cooling Optimization of a Car Vehicle with an Adjoint-Based Approach

2018-04-03
2018-01-0721
The main objective of this work is to present an adjoint-based methodology to address combined optimization of drag force and cooling flow rate of an industrial vehicle. In order to cope with cooling effect, the volumetric flow rate is treated through a newly introduced cost function and the corresponding adjoint source term is derived. Also an alternative strategy is presented to tackle aerodynamic vehicle design improvement that relies on a so-called indirect force computation. The overall optimization is treated as a Multi-Objective problem and an original approach, called Optimize Both Favor One (OBFO), is introduced that allows selective emphasis on one or another objective without resorting to artificial cost function balancing. Finally, comparative results are presented to demonstrate the merit of the proposed methodology.
Journal Article

Combined Effects of Fuel and Dilution Type on Efficiency Gains of Lean Well-Mixed DISI Engine Operation with Enhanced Ignition and Intake Heating for Enabling Mixed-Mode Combustion

2016-04-05
2016-01-0689
Well-mixed lean or dilute SI engine operation can provide efficiency improvements relative to that of traditional well-mixed stoichiometric SI operation. However, the realized gains depend on the ability to ensure stable, complete and fast combustion. In this work, the influence of fuel type is examined for gasoline, E30 and E85. Several enabling techniques are compared. For enhanced ignition stability, a multi-pulse (MP) transient plasma ignition system is compared to a conventional high-energy inductive spark ignition system. Combined effects of fuel type and intake-gas preheating are examined. Also, the effects of dilution type (air or N2-simulated EGR) on lean efficiency gains and stability limits are clarified. The largest efficiency improvement is found for lean gasoline operation using intake preheating, showing the equivalent of a 20% fuel-economy gain relative to traditional non-dilute stoichiometric operation.
Technical Paper

Combined Effects of Fuel-Type and Engine Speed on Intake Temperature Requirements and Completeness of Bulk-Gas Reactions for HCCI Combustion

2003-10-27
2003-01-3173
To gain a better understanding of how the onset of incomplete bulk-gas reactions changes with engine speed and fuel-type, a parametric study of HCCI combustion and emissions has been conducted. The experimental part of the study was performed at naturally aspirated conditions and included fueling sweeps at four engine speeds (600, 1200, 1800 and 2400 rpm) for research grade gasoline, pure iso-octane and two mixtures of the primary reference fuels (i.e. n-heptane and iso-octane) with octane numbers of 80 and 60. Additionally, single-zone CHEMKIN computations with a detailed mechanism for iso-octane were conducted. The results show that there is a strong coupling between the ignition quality of the fuel and the required intake temperature to phase the combustion at TDC. There is also a direct influence of intake temperature on the completeness of combustion. This is the case because the CO-to-CO2 reactions are highly sensitive to the peak combustion temperatures.
Journal Article

Combined Effects of Multi-Pulse Transient Plasma Ignition and Intake Heating on Lean Limits of Well-Mixed E85 DISI Engine Operation

2014-10-13
2014-01-2615
Well-mixed lean SI engine operation can provide improvements of the fuel economy relative to that of traditional well-mixed stoichiometric SI operation. This work examines the use of two methods for improving the stability of lean operation, namely multi-pulse transient plasma ignition and intake air preheating. These two methods are compared to standard SI operation using a conventional high-energy inductive ignition system without intake air preheating. E85 is the fuel chosen for this study. The multi-pulse transient plasma ignition system utilizes custom electronics to generate 10 kHz bursts of 10 ultra-short (12ns), high-amplitude pulses (200 A). These pulses were applied to a custom spark plug with a semi-open ignition cavity. High-speed imaging reveals that ignition in this cavity generates a turbulent jet-like early flame spread that speeds up the transition from ignition to the main combustion event.
Technical Paper

Combined Experimental/Numerical Study of the Soot Formation Process in a Gasoline Direct-Injection Spray in the Presence of Laser-Induced Plasma Ignition

2020-04-14
2020-01-0291
Combustion issued from an eight-hole, direct-injection spray was experimentally studied in a constant-volume pre-burn combustion vessel using simultaneous high-speed diffused back-illumination extinction imaging (DBIEI) and OH* chemiluminescence. DBIEI has been employed to observe the liquid-phase of the spray and to quantitatively investigate the soot formation and oxidation taking place during combustion. The fuel-air mixture was ignited with a plasma induced by a single-shot Nd:YAG laser, permitting precise control of the ignition location in space and time. OH* chemiluminescence was used to track the high-temperature ignition and flame. The study showed that increasing the delay between the end of injection and ignition drastically reduces soot formation without necessarily compromising combustion efficiency. For long delays between the end of injection and ignition (1.9 ms) soot formation was eliminated in the main downstream charge of the fuel spray.
Technical Paper

Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates

2019-04-02
2019-01-1156
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies and extremely low NOx and particulate emissions, but controlling the combustion timing remains a challenge. This paper explores the potential of Partial Fuel Stratification (PFS) to provide fast control of CA50 in an LTGC engine. Two different compression ratios are used (CR=16:1 and 14:1) that provide high efficiencies and are compatible with mixed-mode SI-LTGC engines. The fuel used is a research grade E10 gasoline (RON 92, MON 85) representative of a regular-grade market gasoline found in the United States. The fuel was supplied with a gasoline-type direct injector (GDI) mounted centrally in the cylinder. To create the PFS, the GDI injector was pulsed twice each engine cycle. First, an injection early in the intake stroke delivered the majority of the fuel (70 - 80%), establishing the minimum equivalence ratio in the charge.
Technical Paper

Comparing Enhanced Natural Thermal Stratification Against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates

2004-10-25
2004-01-2994
Two methods for mitigating unacceptably high HCCI heat-release rates are investigated and compared in this combined experimental/CFD work. Retarding the combustion phasing by decreasing the intake temperature is found to have good potential for smoothing heat-release rates and reducing engine knock. There are at least three reasons for this: 1) lower combustion temperatures, 2) less pressure rise when the combustion is occurring during the expansion stroke, and 3) the natural thermal stratification increases around TDC. However, overly retarded combustion leads to unstable operation with partial-burn cycles resulting in high IMEPg variations and increased emissions. Enhanced natural thermal stratification by increased heat-transfer rates was explored by lowering the coolant temperature from 100 to 50°C. This strategy substantially decreased the heat-release rates and lowered the knocking intensity under certain conditions.
Journal Article

Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements with CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine

2012-04-16
2012-01-0143
In a recent experimental study the in-cylinder spatial distribution of mixture equivalence ratio was quantified under non-combusting conditions by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene). The measurements were made in a single-cylinder, direct-injection, light-duty diesel engine at conditions matched to an early-injection low-temperature combustion mode. A fuel amount corresponding to a low load (3.0 bar indicated mean effective pressure) operating condition was introduced with a single injection at -23.6° ATDC. The data were acquired during the mixture preparation period from near the start of injection (-22.5° ATDC) until the crank angle where the start of high-temperature heat release normally occurs (-5° ATDC). In the present study the measured in-cylinder images are compared with a fully resolved three-dimensional CFD model, namely KIVA3V-RANS simulations.
Journal Article

Comparison of Several Model Validation Conceptions against a “Real Space” End-to-End Approach

2011-04-12
2011-01-0238
This paper1 explores some of the important considerations in devising a practical and consistent framework and methodology for working with experiments and experimental data in connection with modeling and prediction. The paper outlines a pragmatic and versatile “real-space” approach within which experimental and modeling uncertainties (correlated and uncorrelated, systematic and random, aleatory and epistemic) are treated to mitigate risk in modeling and prediction. The elements of data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. The considerations and options are many, and a large variety of viewpoints and precedents exist in the literature, as surveyed here. Rationale is given for the various choices taken in assembling the novel real-space end-to-end framework.
Technical Paper

Comparison of Stochastic Pre-Ignition Behaviors on a Turbocharged Gasoline Engine with Various Fuels and Lubricants

2016-10-17
2016-01-2291
Stochastic pre-ignition (SPI) has been commonly observed in turbocharged spark-ignition direct-injection (SIDI) engines at low-speed and high-load conditions, which causes extremely high cylinder pressures that can damage an engine immediately or degrade the engine life. The compositions and properties of fuels and lubricants have shown a strong impact on SPI frequency. This study experimentally evaluated SPI behaviors on a 2.0-liter 4-cylinder turbocharged SIDI engine with China V market fuel and China fuel blended to US Tier II fuel specifications. China V market fuel showed significantly higher SPI frequency and severity than China blended US Tier II fuel, which was attributed to its lower volatility between 100 °C to 150 °C (or lower T60 to T90 in the distillation curve). Two different formulations of lubricant oils were also tested and their impact on SPI were compared.
Technical Paper

Comprehensive Assessment of Gasoline Spray Robustness for Different Plume Arrangements

2024-04-09
2024-01-2620
Ensuring spray robustness of gasoline direct injection (GDI) is essential to comply with stringent future emission regulations for hybrid and internal combustion engine vehicles. This study presents experimental and numerical assessments of spray for lateral-mounted GDI sprays with two different plume arrangements to analyze spray collapse characteristics, which can significantly deteriorate the atomization performance of fuel sprays. Novel spray characterization methods are applied to analyze complex spray collapse behaviors using diffusive back-illuminated extinction imaging (DBIEI) and 3D computed tomographic (CT) image reconstruction. A series of computational fluid dynamics (CFD) simulations are performed to analyze the detailed spray characteristics besides experimental characterization. Spatio-temporal plume dynamics of conventional triangle-pattern spray are evaluated and compared to a plume pattern with an inversed T pattern that has more open space between plumes.
Journal Article

Conceptual Investigation of the Origins of Hydrocarbon Emissions from Mixing-Controlled, Compression-Ignition Combustion

2017-03-28
2017-01-0724
Experiments conducted with a set of reference diesel fuels in an optically accessible, compression-ignition engine have revealed a strong correlation between hydrocarbon (HC) emissions and the flame lift-off length at the end of the premixed burn (EOPMB), with increasing HC emissions associated with longer lift-off lengths. The correlation is largely independent of fuel properties and charge-gas O2 mole fraction, but varies with fuel-injection pressure. A transient, one-dimensional jet model was used to investigate three separate mechanisms that could explain the observed impact of lift-off length on HC emissions. Each mechanism relies on the formation of mixtures that are too lean to support combustion, or “overlean.” First, overlean regions can be formed after the start of fuel injection but before the end of the premixed burn.
Technical Paper

Correlation of Chemical Compositions and Fuel Properties with Fuel Octane Rating of Gasoline Containing Ethanol

2011-08-30
2011-01-1986
With increasing use of ethanol in automotive fuel in recent years, which can be made from renewable feedstocks, the chemical composition of gasoline is changed. The compositional change results in many changes in fuel properties. One key property is the octane rating of gasoline. Market data has shown the shifts of octane rating (antiknock index or AKI) upward due to more penetration of E10 gasoline in the US market. However, the increase in research octane is more pronounced as compared to motor octane, therefore the increase in octane sensitivity in gasoline. Refineries have used the change in octane due to ethanol contribution by sending so called sub-grade gasoline to terminals expecting the final blend after mixing with ethanol to meet the market requirement in octane. Thus the octane rating of the final blend will largely depend on the sub-grade gasoline composition and ethanol.
Technical Paper

Correlation of Detailed Hydrocarbon Analysis with Simulated Distillation of US Market Gasoline Samples and its Effect on the PEI-SimDis Equation of Calculated Vehicle Particulate Emissions

2023-04-11
2023-01-0298
Several predictive equations based on the chemical composition of gasoline have been shown to estimate the particulate emissions of light-duty, internal combustion engine (ICE) powered vehicles and are reviewed in this paper. Improvements to one of them, the PEISimDis equation are detailed herein. The PEISimDis predictive equation was developed by General Motor’s researchers in 2022 based on two laboratory gas chromatography (GC) analyses; Simulated Distillation (SimDis), ASTM D7096 and Detailed Hydrocarbon Analysis (DHA), ASTM D6730. The DHA method is a gas chromatography mass spectroscopy (GC/MS) methodology and provides the detailed speciation of the hundreds of hydrocarbon species within gasoline. A DHA’s aromatic species from carbon group seven through ten plus (C7 – C10+) can be used to calculate a Particulate Evaluation Index (PEI) of a gasoline, however this technique takes many hours to derive because of its long chromatography analysis time.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Technical Paper

Crash-induced Loads in Liftgate Latching Systems

2018-04-03
2018-01-1333
Automotive liftgate latches have been subject to regulation for minimum strength and inertial resistance requirements since the late 1990’s in the US and globally since the early 2000’s, possibly due to liftgate ejections stemming from the first generation Chrysler minivans which employed latches that were not originally designed with this hazard in mind. Side door latches have been regulated since the 1960’s, and the regulation of liftgate, or back door latches, have been based largely on side door requirements, with the exception of the orthogonal test requirement that is liftgate specific. Based on benchmarking tests of liftgate latches, most global OEM’s design their latches to exceed the minimum regulatory requirements. Presumably, this is based on the need to keep doors closed during crashes and specifically to do so when subjected to industry standard tests.
Technical Paper

Cycle-Resolved Measurements of Flame Kernel Growth and Motion Correlated with Combustion Duration

1990-02-01
900023
A recently developed spark plug equipped with fiber-optic flame-arrival detectors has been used to measure the motion and rate of growth of the early flame kernel. The cylinder pressure and gas velocity in the spark gap were measured simultaneously with the flame kernel measurements, permitting the data to be analyzed on a cycle-by-cycle basis to identify cause-and-effect correlations between the measured parameters. The data were obtained in a homogeneous-charge research engine that could be modified to produce three very different flow fields: (1) high swirl with high turbulence intensity, (2) tumble vortex with moderate turbulence intensity, and (3) negligible bulk motion with low turbulence intensity. The results presented show a moderate correlation between the combustion duration and the rate of growth of the flame kernel, but virtually no correlation with either the magnitude or direction of movement of the flame kernel away from the spark gap.
Technical Paper

DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations

2005-11-01
2005-01-3511
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
Technical Paper

Defining In-Vehicle Location and Functional Attributes of a ‘Button-Style Electronic Automatic Transmission Shifter’ Using DFSS Methodology with Customer Clinic Approach

2017-03-28
2017-01-1131
The implementation of electronic shifters (e-shifter) for automatic transmissions in vehicles has created many new opportunities for the customer facing transmission interface and in-vehicle packaging. E-shifters have become popular in recent years as their smaller physical size leads to packaging advantages, they reduce the mass of the automatic transmission shift system, they are easier to install during vehicle assembly, and act as an enabler for autonomous driving. A button-style e-shifter has the ability to create a unique customer interface to the automatic transmission, as it is very different from the conventional column lever or linear console shifter. In addition to this, a button-style e-shifter can free the center console of valuable package space for other customer-facing functions, such as storage bins and Human-Machine Interface controllers.
X